Template-Based Prompt Systems #
Prompt templates provide structured frameworks for generating consistent, reusable prompts across different use cases and applications.
Why Use Prompt Templates #
- Consistency: Ensure all prompts follow best practices
- Reusability: Create prompts once, use them repeatedly with different inputs
- Modularity: Compose complex prompts from simple building blocks
- Maintenance: Update prompts in a single location
- Version Control: Track changes to prompts over time
Basic Structure #
A template system typically includes:
- Variables: Placeholders for dynamic content
- Static Text: Consistent instructions and formatting
- Conditionals: Optional sections based on context
- Metadata: Information about the template purpose and usage
Implementation Patterns #
Simple Variable Substitution #
You are a helpful assistant providing information about {topic}.
The user is a {audience_type} with {expertise_level} knowledge level.
Please provide a {length} explanation about: {query}
Component-Based Templates #
Break prompts into reusable sections:
def create_prompt(components, variables):
prompt_parts = []
if "role" in components:
prompt_parts.append(ROLE_TEMPLATES[components["role"]].format(**variables))
if "task" in components:
prompt_parts.append(TASK_TEMPLATES[components["task"]].format(**variables))
if "format" in components:
prompt_parts.append(FORMAT_TEMPLATES[components["format"]].format(**variables))
return "\n\n".join(prompt_parts)
Template Libraries #
Create collections of tested, optimized templates for specific scenarios:
- Classification templates
- Summarization templates
- Creative writing templates
- Analysis templates
Advanced Template Techniques #
Context-Aware Templates #
def generate_prompt(user_query, context):
# Select template based on query characteristics
if contains_technical_terms(user_query):
base_template = TECHNICAL_TEMPLATE
elif is_creative_request(user_query):
base_template = CREATIVE_TEMPLATE
else:
base_template = GENERAL_TEMPLATE
# Add context-specific elements
if context.get("user_history"):
base_template += USER_HISTORY_TEMPLATE
return base_template.format(query=user_query, **context)
Dynamic Template Selection #
Use AI to select or compose templates:
Given the following user query: "{query}"
Select the most appropriate prompt template from the following options:
1. {template_1_description}
2. {template_2_description}
3. {template_3_description}
Explain your reasoning, then output the chosen template number.
Template Management #
- Testing: Evaluate template performance with different inputs
- Versioning: Track template changes over time
- Documentation: Document purpose, variables, and usage examples
- Error Handling: Validate inputs and provide fallbacks
Code Example: Template Implementation #
class PromptTemplate:
def __init__(self, template_string, required_variables=None):
self.template = template_string
self.required_variables = required_variables or []
def format(self, **kwargs):
# Validate all required variables are present
missing = [var for var in self.required_variables if var not in kwargs]
if missing:
raise ValueError(f"Missing required variables: {', '.join(missing)}")
# Apply the variables to the template
return self.template.format(**kwargs)
# Example usage
summary_template = PromptTemplate(
"Summarize the following text in {style} style with {word_count} words:\n\n{text}",
required_variables=["text", "style", "word_count"]
)
prompt = summary_template.format(
text="Lorem ipsum...",
style="concise",
word_count=100
)